Abstract

AbstractTriangular cross-section color center photonics in silicon carbide is a leading candidate for scalable implementation of quantum hardware. Within this geometry, we model low-loss beam splitters for applications in key quantum optical operations such as entanglement and single-photon interferometry. We consider triangular cross-section single-mode waveguides for the design of a directional coupler. We optimize parameters for a 50:50 beam splitter. Finally, we test the experimental feasibility of the designs by fabricating triangular waveguides in an ion beam etching process and identify suitable designs for short-term implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call