Abstract
When twisting a strip of paper or acetate under high longitudinal tension, one observes, at some critical load, a buckling of the strip into a regular triangular pattern. Very similar triangular facets have recently been found in solutions to a new set of geometrically exact equations describing the equilibrium shape of thin inextensible elastic strips. Here, we formulate a modified boundary-value problem for these equations and construct post-buckling solutions in good agreement with the observed pattern in twisted strips. We also study the force–extension and moment–twist behaviour of these strips by varying the mode number n of triangular facets and find critical loads with jumps to higher modes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.