Abstract

By solving the time dependent Ginzburg–Landau equations, we investigated the influence of an internal triangular arrangement of point-like defects on the vortex configurations in a thin mesoscopic sample. The effect of the number of internal defects and their nature on the entrance position of the vortex is studied for a very thin circular sample. We found that the interplay between the vortex–vortex repulsion, the vortex–defect interaction and the interaction with the sample border leads to non-commensurate vortex configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.