Abstract
Triangle-hinge models [arXiv:1503.08812] are introduced to describe worldvolume dynamics of membranes. The Feynman diagrams consist of triangles glued together along hinges and can be restricted to tetrahedral decompositions in a large N limit. In this paper, after clarifying that all the tetrahedra resulting in the original models are orientable, we define a version of triangle-hinge models that can describe the dynamics of unoriented membranes. By regarding each triangle as representing a propagation of an open membrane of disk topology, we introduce a local worldvolume parity transformation which inverts the orientation of triangle, and define unoriented triangle-hinge models by gauging the transformation. Unlike two-dimensional cases, this local transformation generally relates a manifold to a nonmanifold, but still is a well-defined manipulation among tetrahedral decompositions. We further show that matter fields can be introduced in the same way as in the original oriented models. In particular, the models will describe unoriented membranes in a target spacetime by taking matter fields to be the target space coordinates.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.