Abstract

Open-shell benzenoid polycyclic hydrocarbons (BPHs) are promising materials for future quantum applications. However, the search for and realization of open-shell BPHs with desired properties is a challenging task due to the gigantic chemical space of BPHs, requiring new strategies for both theoretical understanding and experimental advancement. In this work, by building a structure database of BPHs through graphical enumeration, performing data-driven analysis, and combining tight-binding and mean-field Hubbard calculations, we discovered that the number of the internal vertices of the BPH graphs is closely correlated to their open-shell characters. We further established a simple rule, the triangle counting rule, to predict the magnetic ground states of BPHs. These findings not only provide a database of open-shell BPHs, but also extend the well-known Lieb's theorem and Ovchinnikov's rule and provide a straightforward method for designing open-shell carbon nanostructures. These insights may aid in the exploration of emerging quantum phases and the development of magnetic carbon materials for technology applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.