Abstract

The exact nature, harmful effects and aetiology of autism spectrum disorder (ASD) have caused widespread confusion. Artificial intelligence (AI) science helps solve challenging diagnostic problems in the medical field through extensive experiments. Disease severity is closely related to triage decisions and prioritisation contexts in medicine because both have been widely used to diagnose various diseases via AI, machine learning and automated decision-making techniques. Recently, taking advantage of high-performance AI algorithms has achieved accessible success in diagnosing and predicting risks from clinical and biological data. In contrast, less progress has been made with ASD because of obscure reasons. According to academic literature, ASD diagnosis works from a specific perspective, and much of the confusion arises from the fact that how AI techniques are currently integrated with the diagnosis of ASD concerning the triage and priority strategies and gene contributions. To this end, this study sought to describe a systematic review of the literature to assess the respective AI methods using the available datasets, highlight the tools and strategies used for diagnosing ASD and investigate how AI trends contribute in distinguishing triage and priority for ASD and gene contributions. Accordingly, this study checked the Science Direct, IEEE Xplore Digital Library, Web of Science (WoS), PubMed, and Scopus databases. A set of 363 articles from 2017 to 2022 is collected to reveal a clear picture and a better understanding of all the academic literature through a final set of 18 articles. The retrieved articles were filtered according to the defined inclusion and exclusion criteria and classified into three categories. The first category includes ‘Triage patients based on diagnosis methods’ which accounts for 16.66% (n = 3/18). The second category includes ‘Prioritisation for Risky Genes’ which accounts for 66.6% (n = 12/18) and is classified into two subcategories: ‘Mutations observation based’, ‘Biomarkers and toxic chemical observations’. The third category includes ‘E-triage using telehealth’ which accounts for 16.66% (n = 3/18). This multidisciplinary systematic review revealed the taxonomy, motivations, recommendations and challenges of ASD research that need synergistic attention. Thus, this systematic review performs a comprehensive science mapping analysis and discusses the open issues that help perform and improve the recommended solution of ASD research direction. In addition, this study critically reviews the literature and attempts to address the current research gaps in knowledge and highlights weaknesses that require further research. Finally, a new developed methodology has been suggested as future work for triaging and prioritising ASD patients according to their severity levels by using decision-making techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call