Abstract

It is well known that there are a great many apparently consistent vacua of string theory. We draw attention to the fact that there appear to be very few Calabi--Yau manifolds with the Hodge numbers h^{11} and h^{21} both small. Of these, the case (h^{11}, h^{21})=(3,3) corresponds to a manifold on which a three generation heterotic model has recently been constructed. We point out also that there is a very close relation between this manifold and several familiar manifolds including the `three-generation' manifolds with \chi=-6 that were found by Tian and Yau, and by Schimmrigk, during early investigations. It is an intriguing possibility that we may live in a naturally defined corner of the landscape. The location of these three generation models with respect to a corner of the landscape is so striking that we are led to consider the possibility of transitions between heterotic vacua. The possibility of these transitions, that we here refer to as transgressions, is an old idea that goes back to Witten. Here we apply this idea to connect three generation vacua on different Calabi-Yau manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.