Abstract

Because triacylglycerol (TAG) structure influences the metabolic fate of its component fatty acids, we have examined human colostrum and mature milk TAG with particular attention to the location of the very long chain polyunsaturated fatty acid on the glycerol backbone. The analysis was based on the formation of various diacylglycerol species from human milk TAG upon chemical (Grignard degradation) or enzymatic degradation. The structure of the TAG was subsequently deduced from data obtained by gas chromatographic analysis of the fatty acid methyl esters in the diacylglycerol subfractions. The highly specific TAG structure observed was identical in mature milk and colostrum. The three major fatty acids (oleic, palmitic and linoleic acids) each showed a specific preference for a particular position within milk TAG: oleic acid for the sn-1 position, palmitic acid for the sn-2 position and linoleic acid for the sn-3 position. Linoleic and alpha-linolenic acids exhibited the same pattern of distribution and they were both found primarily in the sn-3 (50%) and sn-1 (30%) positions. Their longer chain analogs, arachidonic and docosahexaenoic acids, were located in the sn-2 and sn-3 positions. These results show that polyunsaturated fatty acids are distributed within the TAG molecule of human milk in a highly specific fashion, and that in the first month of lactation the maturation of the mammary gland does not affect the milk TAG structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call