Abstract

To investigate the effect of exogenous application of triacontanol (TRIA) on 2 wheat (Triticum aestivum L.) cultivars (S-24 and MH-97) under salt stress, an experiment was conducted in a greenhouse under natural climatic conditions. Both cultivars were grown in full strength Hoagland's nutrient solution under nonsaline (0 mM NaCl) or saline (150 mM NaCl) conditions in sand culture. Three optimized TRIA levels (0, 10, and 20 µM) were used as foliar spray at 3 growth stages, i.e. vegetative, boot, and vegetative + boot stages. Ninety-two-day-old plants were subjected to data analysis. Salinity stress adversely affected various growth, physiological, and biochemical attributes in both wheat cultivars at all growth stages. Under salt stress, activities of superoxide dismutase (SOD) and peroxidase (POD) decreased (cv. MH-97), while those of catalase (CAT) and POD (cv. S-24) increased. Contents of hydrogen peroxide (H_{2}O_{2}), malondialdehyde (MDA), Na^+, and Cl^- increased in both wheat cultivars at all growth stages. A foliar spray of 10 µM TRIA was more effective in reducing the adverse effects of salt stress on growth, yield, and leaf water relations of wheat plants when applied at the vegetative or vegetative + boot growth stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.