Abstract

New amines for reactive absorption of CO2 from process gases were investigated in a comprehensive experimental screening. All studied amines are derivates of triacetoneamine and differ only in the substituent of the triacetoneamine ring structure. The amines are abbreviated by the acronym EvA with a consecutive number, designating the derivate. About 50 EvAs were considered in this work from which 26 were actually synthesized and investigated in aqueous solution. The mass fraction of the amines in the unloaded solution was either w˜EvA0=0.05 g/g or w˜EvA0=0.4 g/g. The following properties were studied: solubility of CO2, rate of absorption of CO2, liquid–liquid and solid–liquid equilibrium, foaming behavior, dynamic viscosity, and acid constants. The nine most promising EvAs were evaluated with the NoVa short-cut method (Vasiliu et al., 2020). The method yields estimates for the specific energy demand and recirculation rate for a given purification task. Two typical purification tasks were considered: the CO2-removal from natural gas and from synthesis gas, respectively. Some of the EvAs showed significantly improved performance compared to monoethanolamine (MEA) and a solvent-blend of methyl-diethanolamine and piperazine (MDEA/PZ).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.