Abstract

An environmentally sustainable world can be realized by using microorganisms to produce value-added materials from renewable biomass. Triacetic acid lactone (TAL) is a high-value-added compound that is used as a precursor of various organic compounds such as food additives and pharmaceuticals. In this study, we used metabolic engineering to produce TAL from glucose using an oleaginous yeast Yarrowia lipolytica. We first introduced TAL-producing gene 2-pyrone synthase into Y.lipolytica, which enabled TAL production. Next, we increased TAL production by engineering acetyl-CoA and malonyl-CoA biosynthesis pathways by redirecting carbon flux to glycolysis. Finally, we optimized the carbon and nitrogen ratios in the medium, culminating in the production of 4078mg/L TAL. The strategy presented in this study had the potential to improve the titer and yield of polyketide biosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call