Abstract

Traditional dc-ac current source inverter (CSI) has a right-half-plane (RHP) zero in its control-to-output transfer function. This RHP zero causes the inverter output to fall before rising when a step increase in command reference is required (commonly known as non-minimum-phase effect). To achieve a better dynamic response, this paper proposes the design of a tri-state CSI using only an additional semiconductor switch for introducing unique freewheeling states to the traditional six active and three null states of a CSI. With the freewheeling states inserted appropriately within the inverter state sequence, the inductive boosting and discharging intervals can be decoupled, allowing the RHP zero to be eliminated with only minor circuit modifications (high level control schemes like predictive and multiloop voltage/current control remain unchanged). The designed inverter can be controlled using an appropriately formulated digital pulsewidth modulation algorithm, which can conveniently be implemented using a digital signal processor with an on-chip carrier-based modulator and an external digital programmable logic device. The resulting inverter is tested by simulation and experimentally using a laboratory prototype for demonstrating its improved dynamic performance with no commutation difficulties introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.