Abstract

Methane tri-reforming combines steam reforming, dry reforming and partial oxidation of methane in a single reactor. The heat generated by the exothermic partial oxidation of methane can be used to supply the energy for the other two endothermic reactions (dry and steam reforming of methane). The thermoneutral condition allows the use of a tri-reformer with a simpler reactor structure since no external heat supply is necessary. Thermodynamic analysis of the thermoneutral reactor was performed using Gibbs free energy minimization approach. Conventional tri-reformers have heat and mass management problems. We developed a novel tri-reformer concept that utilizes proper distribution of O2 gas to the reactor to address the problems. The optimization of the proposed reactor was performed with the objective function of minimizing total annual cost. Maintaining the peak temperatures by adjusting the O2 flow rate at the distribution point along the reactor was shown to provide good load flexibility for the change in methane flow rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.