Abstract

Increased use of the biocidal compound tri- n-butyltin (TBT) in antifouling paints has prompted research aimed at determining the mechanism for TBT toxicity. Past investigations indicate that the primary cellular target for TBT is the cell membrane. Erythrocyte suspensions treated with TBT concentrations ≧ 5 μM undergo hemolysis described by a sigmoidal kinetic pattern. Transformation of cell shape from discocyte to echinocyte occurs at TBT concentrations ≧ 0.1 μM , indicating that the compound enters the outer membrane bilayer. TBT at concentrations ≧ 10 μM forms electron-dense aggregates that are intercalated within plasma membranes as viewed in ultrathin sections by transmission electron microscopy. Qualitative X-ray microanalysis of these aggregates confirms the presence of tin. The size of these structures can be modified by either 10 mM cyanide or 2,3-dimercaptopropanol (British Anti-Lewisite, BAL). Adding 10 mM cyanide to hemolytic TBT concentrations resulted in a synergistic stimulation of hemolysis attributable to high cyanide anion concentrations in or near the cell membrane. The elevated cyanide anion levels are thought to contribute to membrane lysis. The lipophilic dimercapto compounds BAL, dithiothreitol, and 2,3-dimercaptosuccinate are effective inhibitors of TBT-induced lysis. Water-soluble 2,3-dimercapto-1-propane sulfonate, a BAL analog, was largely ineffective as an inhibitor. The detailed molecular mechanism for TBT-induced membrane lysis is not yet clear. Cellular ATP depletion could be induced by TBT as well as by delipidation of anionic phospholipids or even formation of tributylstannylperoxy radicals, resulting in lipid peroxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.