Abstract

Tactile representation on touchscreens plays an important role in improving realism and richness of users' interaction experience. The dynamic lateral force range and the efficient feedback dimensions are very critical in determining the fidelity of tactile displays. This article develops a tri-modal Electrovibration, Ultrasonic Vibration, and Mechanical Vibration (EUMV) tactile display integrating three types of representative principles, which enhances the dynamic lateral force range by leveraging electrostatic and ultrasonic vibrations stimuli, and induces the normal feedback dimension by utilizing mechanical vibration stimulus. Then, a tactile perception scheme with the EUMV display is proposed for simultaneously rendering contour and texture roughness features of visualized surfaces, in which the contour gradient-lateral force model and the texture gradient-perceived roughness model are determined respectively. Objective and subjective evaluations with 20 participants show that the novel scheme establishes significant improvements in both correct recognition ratios of geometric shapes and tactile perception realism of visualized images than the previous studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.