Abstract

AbstractAlthough numerous efforts are made to synthesize active electrocatalysts for green hydrogen production; catalyst stability, and facile synthesis to scale up the production are still challenging. Herein, the production of novel non‐PGM catalysts for the oxygen reduction reaction (OER) in an alkaline aqueous medium is reported, which is based on the synthesis of a trimetallic metal–organic framework (MOF) precursors. Fine‐tuning of the composition of the metal centers (Ni, Co, and Fe) shows a great effect on OER activity after the MOF undergoes dynamic chemical and structural transformations under OER conditions. In situ characterization reveals the origin of OER activity enhancement as metals’ oxidation state increases, inducing compressive mechanical strain on metal centers, enhancing the electronic conductivity through the formation of oxygen vacancies, and stronger metal–oxygen covalency. Catalysts are used in membrane electrode assembly (MEA) setup within an industrial full‐cell anion exchange membrane electrolyzer (AEMEC), showing a stable performance for 550 h without noticeable decay at 750 and 1000 mA cm−2 industrial level current densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call