Abstract

Tele-health and e-healthcare are some of the innovative e-commerce appliances that can eliminate the barrier between time and distance among health care centres and patients. The proposed work approaches the obstacle to secure digital medical image data in a public cloud. The most crucial part of e-healthcare and telemedicine industries is cyber-attacks. To thwart cyber-attacks, it is necessary to protect the medical images and transmit them securely. In this paper, a novel way of scrambling and Deoxyribonucleic Acid (DNA) sequence operations is performed to encrypt the digital medical images. A chaotic tri-level scrambling is carried out by a two dimensional Tinkerbell map. Experimental outcomes and security analyses such as statistical, differential, keyspace, encryption quality, along with chosen-plaintext attack analysis have been perpetrated to determine the feasibility and potency of the proposed Digital Imaging and Communications in Medicine (DICOM) image encryption method. The algorithm attains average entropy of 7.99 and near-zero correlation with NPCR and UACI of 99.6 and 33.4, respectively. Further, the efficiency of the algorithm is compared with the state of the literature encryption techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.