Abstract

Efficient and cost effective counter electrode (CE) is pre-requisite for the commercialization of dye-sensitized solar cell (DSSC). Present work investigates ultra small size platinum-iron alloy nanoparticles dispersed over nitrogen-doped graphene (PtFe/NG) as an effective counter electrode for DSSC. Hereby we achieve low loading of Pt by alloying with Fe accompanied by superior electrocatalytic activity towards the iodide-triiodide (I−/I3−) mechanism. Enhancement in electrocatalytic performance of PtFe/NG has been shown by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization analysis. PtFe/NG counter electrode exhibits higher power conversion efficiency (∼6.12%) with lower charge transfer resistance, which helps in faster diffusion of I−/I3− ions as compared to NG and Pt/NG counter electrodes. The increased electrocatalytic activity of PtFe/NG is due to the collective effect of intrinsic electronic effects by alloying, uniform dispersion of small PtFe alloy nanoparticles over nitrogen doped graphene, and additional catalytic sites offered by nitrogen-doped graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.