Abstract

By introducing a third measurement comb with different repetition frequencies (Δ f r e p ), the tri-comb spectroscopy technique overcomes the ambiguity problem of the original dual-comb spectroscopy technique and eliminates physical delay stages in multidimensional coherent spectroscopy. Nowadays, tri-comb generation based on three frequency-stabilized comb lasers is overly complicated and costly for many potential applications. Previous research on single-cavity dual-combs inspired research on single-cavity tri-combs. However, the currently reported tri-comb structures cannot achieve independently controllable pulses. This paper shows a dual-ring tri-comb seed-source structure using wavelength-based multiplexing in one of the rings. The wavelength and power of the output pulse are independently controlled by using the dual-ring structure. The Δ f r e p of wavelength multiplexing-based dual-comb output can be tuned by adjusting the intra-ring polarization controller (PC). In the case of single-wavelength mode-locking, the PC can be adjusted to achieve a wavelength tuning range of nearly 20nm. The tri-comb source could offer an attractive alternative solution as a low-complexity light source for field-deployable multi-comb metrology applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call