Abstract

Cluster assembling has been one of the hottest topics in nanochemistry. In certain ligand-protected gold clusters, bi-icosahedral cores assembled from Au13 superatoms were found to be analogues of diatomic molecules F2, N2, and singlet O2, respectively, in electronic shells, depending upon the super valence bond (SVB) model. However, challenges still remain for extending the scale in cluster assembling via the SVB model. In this work, ligand-protected tri- and tetra-superatomic clusters composed of icosahedral M@Au12 (M = Au, Pt, Ir, and Os) units are theoretically predicted. These clusters are stable with reasonable highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gaps and proven to be analogues of simple triatomic (Cl3-, OCl2, O3, and CO2) and tetra-atomic (N≡C-C≡N, and Cl-C≡C-Cl) molecules in both geometric and electronic structures. Moreover, a stable cluster-assembling gold nanowire is predicted following the same rules. This work provides effective electronic rules for cluster assembling on a larger scale and gives references for their experimental synthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call