Abstract

TRH (thyroliberin) is a tripeptide (pGlu-His-ProNH2) that signals via G protein-coupled receptors. Until recently, only a single receptor for TRH was known (TRH-R1), but two groups identified a second receptor, TRH-R2. We independently discovered TRH-R2. Using an extensive set of TRH analogs, we found no differences in TRH-R1 and TRH-R2 binding or in acute stimulation of signaling. TRH-R2 was more rapidly internalized upon binding TRH and exhibited a greater level of TRH-induced down-regulation than TRH-R1. During prolonged exposure to TRH, cells expressing TRH-R2 exhibited a lower level of gene induction than cells expressing TRH-R1. TRH-R2 receptor mRNA was present in very discrete nuclei and regions of rat brain. A major mRNA transcript for TRH-R2 was seen in the cerebral cortex, pons, thalamus, hypothalamus, and midbrain with faint bands found in the striatum and pituitary. The extensive distribution of TRH-R2 in the brain suggests that it mediates many of the known functions of TRH that are not transduced by TRH-R1. The variations in agonist-induced internalization and down-regulation/desensitization, and anatomic distribution of TRH-R2 compared with TRH-R1, suggest important functional differences between the two receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.