Abstract
Thyrotropin-releasing hormone (TRH) injected into the retrotrapezoid nucleus (RTN) of anesthetized rats produces a large, prolonged stimulation of ventilatory output (C. L. Cream, A. Li, and E. E. Nattie. J. Appl. Physiol. 83: 792-799, 1997). Here we inject or dialyze TRH into the RTN of conscious rats. In 6 of 17 injections (200 nl, 3.1 +/- 1.7 mM), ventilation (VE) increased 31% by 10 min, with recovery by 60 min. With dialysis, each animal of one group (n = 5) received, in random order, 10 mM TRH, 10 mM TRHOH (a metabolite of TRH), and artificial cerebrospinal fluid (aCSF); each animal of a second group (n = 5) received aCSF and 1 mM TRH. TRHOH and aCSF had no sustained effects. TRH (1 mM) increased VE (32%, P < 0.02, by 10 min, with recovery by 60 min), O(2) consumption (VO(2); 19%, P < 0. 03), and body (rectal) temperature (T(re); 0.5 degrees C, P < 0.09). TRH (10 mM) increased VE (78%, P < 0.01, by 10 min, with no recovery at 60 min), VO(2) (48%, P < 0.01), and T(re) (1.0 degrees C, P < 0. 01). TRH also induced arousal. The tissue volume affected in dialysis, estimated by spread of dialyzed fluorescein (332.3 mol wt, mol wt of TRH = 362.4), was 1,580 +/- 256 nl for 10 mM (n = 5) and 590 +/- 128 nl for 1 mM (n = 5). We conclude that 1) the RTN is involved in the integration of VE, VO(2), T(re), and arousal and 2) TRH may establish the responsiveness of RTN neurons.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of applied physiology (Bethesda, Md. : 1985)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.