Abstract

In this paper, we present a novel transfer learning framework for network node classification. Our objective is to accurately predict node labels in a target network by leveraging information from an auxiliary source network. Such a transfer learning framework is potentially useful for broader areas of network classification, where emerging new networks might not have sufficient labeled information because node labels are either costly to obtain or simply not available, whereas many established networks from related domains are available to benefit the learning. In reality, the source and the target networks may not share common nodes or connections, so the major challenge of cross-network transfer learning is to identify knowledge/patterns transferable between networks and potentially useful to support cross-network learning. In this work, we propose to learn common signature subgraphs between networks, and use them as structure features for the target network. By combining the original node content features and the new structure features, we develop an iterative classification algorithm, TrGraph, that utilizes label dependency to jointly classify nodes in the target network. Experiments on real-world networks demonstrate that TrGraph achieves the superior performance compared to the state-of-the-art baseline methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.