Abstract

Recently, the security of existing symmetric cryptographic algorithms and protocols has been threatened by new performance challenges and vulnerabilities. In this paper, we propose a dynamic key-dependent approach, ”TRESC”, to make existing symmetric ciphers more efficient and robust. This can be done by using dynamic substitution and permutation primitives to reduce the number of rounds while providing better resistance against cryptanalysis and implementation attacks. In this paper, the Key Setup Algorithm (KSA) of Rivest Cipher 4 (RC4) and its modified variants are applied for the construction of these dynamic key-dependent substitution and permutation primitives. The selection of the RC4-KSA is due to its lightweight implementation since it requires simple permutation operation with minimal overhead. The proposed dynamic cryptographic solution can be integrated in any existing symmetric cipher such as Advanced Encryption Standard (AES), SIMON and SPECK. The security and performance analysis show the robustness and effectiveness of the proposed solution, which strikes a good balance between the required security level and system performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.