Abstract

Recent technological developments have led to the production of inexpensive, non-invasive, miniature magneto-inertial sensors, ideal for obtaining sport performance measures during training or competition. This systematic review evaluates current evidence and the future potential of their use in sport performance evaluation. Articles published in English (April 2017) were searched in Web-of-Science, Scopus, Pubmed, and Sport-Discus databases. A keyword search of titles, abstracts and keywords which included studies using accelerometers, gyroscopes and/or magnetometers to analyse sport motor-tasks performed by athletes (excluding risk of injury, physical activity, and energy expenditure) resulted in 2040 papers. Papers and reference list screening led to the selection of 286 studies and 23 reviews. Information on sport, motor-tasks, participants, device characteristics, sensor position and fixing, experimental setting and performance indicators was extracted. The selected papers dealt with motor capacity assessment (51 papers), technique analysis (163), activity classification (19), and physical demands assessment (61). Focus was placed mainly on elite and sub-elite athletes (59%) performing their sport in-field during training (62%) and competition (7%). Measuring movement outdoors created opportunities in winter sports (8%), water sports (16%), team sports (25%), and other outdoor activities (27%). Indications on the reliability of sensor-based performance indicators are provided, together with critical considerations and future trends.

Highlights

  • IntroductionThe use of such sensors has been revised in swimming [9,10], running [11,12], and strength and ballistic assessment [13,14]

  • The current systematic review identifies and evaluates updated evidence to answer the following questions: (i) In which sport domains are magneto-inertial sensors currently adopted for athlete performance evaluation? (ii) Are sensor-based parameters used to assess motor capacity and analyse the technique of the athlete? (iii) Can sensors be feasibly used to perform match analysis and assess physical demands during training sessions/competitions? (iv) What is currently the potential for the use of inertia-based instrumentation in the field sport setting?

  • Studies analysing athletes in the field during training or simulated training comprised 62% of the total analysed, with 7% undertaken during competition, and 28% of the studies performed in laboratory settings

Read more

Summary

Introduction

The use of such sensors has been revised in swimming [9,10], running [11,12], and strength and ballistic assessment [13,14]. Their partnership with Global Positioning System (GPS) technology has been highlighted for use in team sports [15,16,17,18,19]. In 2015, a systematic review provided a general overview of the dissemination of this technology through different sports disciplines [1] They excluded papers using only sensors mounted on equipment or dealing with non-sport-specific movements (e.g., running). The current systematic review identifies and evaluates updated evidence to answer the following questions: (i) In which sport domains are magneto-inertial sensors currently adopted for athlete performance evaluation? (ii) Are sensor-based parameters used to assess motor capacity (i.e., the highest possible level of functioning of an athlete in exerting maximal velocity or strength in a standardized environment [20]) and analyse the technique of the athlete? (iii) Can sensors be feasibly used to perform match analysis and assess physical demands during training sessions/competitions? (iv) What is currently the potential for the use of inertia-based instrumentation in the field sport setting?

Methods
Findings
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.