Abstract

Anoxic sulfidic waters provide important media for studying the effect of reducing conditions on the cycling of trace metals. In 1987–1988, dissolved and particulate trace metal (Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb) concentrations were determined in the water column of the anoxic Drammensfjord basins, southeastern Norway. The iminodiacetic acid type chelating resin (Chelex 100) was used for the preconcentration of trace metals. The trace metal concentrations were determined using atomic absorption spectrophotometry (AAS), differential pulse polarography (DPP), and differential pulse-anodic stripping voltammetry (DP-ASV). It was observed that the trace metals Mn and Fe were actively involved in the processes of redox cycling (oxidationreduction and precipitation-dissolution) at the O2H2S interface. The dissolved concentrations of Mn, Fe and Co showed maxima just below the O2H2S interface. The seasonal enhancement in the maxima of both dissolved and particulate Mn and Fe at the redox cline is mainly governed by the downward movement of water which carries oxygen. An association of Co with the Mn cycle was observed, while the total dissolved Ni was decreased by only 10–35% in the anoxic waters. The dissolved concentrations of Cu, Zn, Pb and, to a lesser extent, Cd decreased in the anoxic zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.