Abstract

Ringed seals (Phoca hispida) have been used as bioindicator species of environmental contamination in Canada since the 1970s. In the present study, seals were harvested during subsistence hunts in four regions of the Canadian Arctic: Beaufort Sea, Arctic Archipelago, Hudson Bay, and coastal Labrador. An extensive suite of persistent organic pollutants (POPs) was determined in seal blubber collected for multiple years between 1972 and 2016. Results from this long-term study indicate geographical differences in the contaminant concentrations in seals and the significant general decrease of most POPs, including polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT) and related compounds, chlordanes (CHL), and hexachlorocyclohexanes (HCH) over time in ringed seals. The highest decrease rates (up to −9.1%/year for α-HCH) were found in seals from the Hudson Bay region where all chemicals investigated have significantly decreased since 1986. Significant increases in concentrations of hexachlorobenzene (HCB) in seals from Labrador and β-HCH in Sachs Harbour, NT and Arctic Archipelago were observed. Site-specific and contaminant-specific associations between climate pattern (i.e., Arctic Oscillation, North Atlantic Oscillation, and Pacific/North American pattern) and mean ice-coverage (total, first-year ice, and old-ice) were found at sites with the longest time trend data (i.e., Arviat, Sachs Harbour/Ulukhaktok and Resolute Bay). Overall, results suggest that North American and international regulations have led to the long-term reduction of most POPs in Canadian Arctic ringed seals by reducing emissions from primary sources. However, other sources of legacy compounds (e.g., environmental reservoirs) as well changes in food web composition and structure in relation to climate changes could also be influencing the very slow rates of decline, or stable levels, of contaminants found in seals at some sites. Further work is warranted to discern between co-variation of climate changes and contaminant concentrations and cause-and-effect relationships.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call