Abstract
In an effort to find correlations between size changes with temperature of lipophilic polymers in solution and viscosity index trends, the determination of the size of thermoresponsive polymers of various architectures (linear, comb-like, star, and hyperbranched) using two experimental techniques under infinite dilution conditions (0.5% w/w) – dynamic light scattering and small angle neutron scattering, and predictive molecular dynamics simulations is described herein. Viscosity index is an important parameter for lubricants and other rheological applications. The aim of this work was to predict polymer behavior as viscosity index improvers (VIIs) using tools which require minimal amounts of material, as opposed to measuring kinematic viscosities, which require multigram quantities. There were no significant correlations between changes in polymer size with temperature and viscosity index (VI). The polymers with the highest VI (polyalkyl methacrylate - PAMA and Star PAMA) had polar backbones in contrast t...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.