Abstract

Spasticity develops after supraspinal or spinal lesions of descending motor systems, with obligate involvement of the corticospinal tract. Spasticity is characterized by an increase in muscle tone, which, in contrast to many other types of enhanced muscle tone, shows a marked velocity-dependent increase when the muscle is passively stretched. The pathophysiological mechanisms underlying this spastic muscle tone remain obscure. Three major causes are currently considered possible: (1) changes in the excitability of spinal interneurones; (2) receptor hypersensitivity; (3) formation of new synapses by sprouting. The latter mechanism could account for the long time course over which spastic muscle tone develops in hemiplegic or paraplegic patients, but there is no experimental evidence for this hypothesis. The electromyographic (EMG) gait analysis of patients with spasticity has thrown doubt on the common belief that the velocity-dependent increase in spastic muscle tone is evoked by stretch reflex activity and has led to the idea that spastic muscle tone resides in the muscle fibres themselves. While such a mechanism may contribute to the slowness of active movements in spastic patients, recent experiments on patients with spastic arm paresis have confirmed the classical view that the spastic muscle tone is related to the EMG activity evoked in the passively stretched muscle. This pathological EMG activity is seen during the entire range of the dynamic phase of the stretch, during which a normal muscle exhibits only an early, phasic burst at the highest stretch velocities employed. For the pharmacological treatment of spasticity, substances with different central or peripheral actions are available. Their assumed receptor actions are described, together with their main indications and side-effects.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call