Abstract
In this paper, we have explored the relativistic density functional theory study on a series of deprotonated porphyrinoid (Ln) complexes of uranyl to investigate the geometrical structures and chemical bonding. The ligands bound with uranyl in the 1:1 complexes [UO2(Ln)]x (n = 4, 5, 6; x = 0, -1, -2), showing more thermodynamic stability for "in-cavity" structures of L5 and L6 than that of the "side-on" structure of L4 and an increase in stability with the increase of negative charges, L2- < L3- < L4-. Among the six ligands, the cyclo[6]pyrrole presents the best selectivity toward uranyl. Based on chemical bonding analyses, the U-NL bond in the in-cavity complexes adopts a typical dative NL → U bond with mainly ionic bonding and significant covalency, which comes from the significant orbital interaction of U 5fϕ6dδ7s hybrid AOs and NL 2p-based MOs. This work provides a systematic understanding of the coordination chemistry in uranyl pyrrole-containing macrocycle complexes and the nature of chemical bonding in such systems, which may provide inspirations for the future design of synthetic targets that could be relevant to actinide separations or in the remediation of spent nuclear fuel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.