Abstract
Modern mass spectrometry is one of the most frequently used methods of quantitative proteomics, enabling determination of the amount of peptides in a sample. Although mass spectrometry is not inherently a quantitative method due to differences in the ionization efficiency of various analytes, the application of isotope-coded labeling allows relative quantification of proteins and proteins. Over the past decade, a new method for derivatization of tryptic peptides using isobaric labels has been proposed. The labels consist of reporter and balanced groups. They have the same molecular weights and chemical properties, but differ in the distribution of stable heavy isotopes. These tags are designed in such a way that during high energy collision induced dissociation (CID) by tandem mass spectrometry, the isobaric tag is fragmented in the specific linker region, yielding reporter ions with different masses. The mass shifts among the reporter groups are compensated by the balancing groups so that the overall mass is the same for all forms of the reagent. Samples of peptides are labeled with the isobaric mass tags in parallel and combined for analysis. Quantification of individual peptides is achieved by comparing the intensity of reporter ions in the tandem mass (MS/MS) spectra. Isobaric markers have found a wide range of potential applications in proteomics. However, the currently available isobaric labeling reagents have some drawbacks, such as high cost of production, insufficient selectivity of the derivatization, and relatively limited enhancement of sensitivity of the analysis. Therefore, efforts have been devoted to the development of new isobaric markers with increased usability. The search for new isobaric markers is focused on developing a more selective method of introducing a tag into a peptide molecule, increasing the multiplexicity of markers, lowering the cost of synthesis, and increasing the sensitivity of measurement by using ionization tags containing quaternary ammonium salts. Here, the trends in the design of new isobaric labeling reagents for quantitative proteomics isobaric derivatization strategies in proteomics are reviewed, with a particular emphasis on isobaric ionization tags. The presented review focused on different types of isobaric reagents used in quantitative proteomics, their chemistry, and advantages offer by their application.
Highlights
Mass spectrometry (MS) has become a powerful tool for the analysis of complex protein mixtures.This method combined with various separation techniques offers extremely high resolution and sensitivity; obtaining quantitative results is often problematic
The presented review focused on different types of isobaric reagents used in quantitative proteomics, their chemistry, and advantages offer by their application
Based on the presence of such reporter ions, different samples using 4-plex kit, or up to eight samples using the 8-plex kit. Both 4-plex and 8-plex the isobaric tags for relative and absolute quantification (iTRAQ) labeling reagent can be applied in the analysis of four different samples using 4-plex kit, or are commonly used in the quantitative proteomic analysis of peptides; some differences in up to eight samples using the 8-plex kit
Summary
Mass spectrometry (MS) has become a powerful tool for the analysis of complex protein mixtures. The reporter groups may have different molecular masses because of isotopic substitution This difference allows distinguishing and quantification of peptides from various samples. The structure of TMT reagent was a relatively complex and involved deuterium substitution, which may lead to the chromatographic separation of labeled peptides and quantification errors. Another example of isobaric tag, isobaric tags for relative and absolute quantification (iTRAQ), was demonstrated by Ross et al who tested this reagent for comparison of protein expression in isogenic yeast strains [15]. In the relative type of analysis, the introduction of a chemically equivalent differential isotopic mass tag is required for comparative quantitation of proteins in different samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.