Abstract

BackgroundMeccus' taxonomy has been quite complex since the first species of this genus was described by Burmeister in 1835 as Conorhinus phyllosoma. In 1859 the species was transferred to the genus Meccus and in 1930 to Triatoma. However, in the twentieth century, the Meccus genus was revalidated (alteration corroborated by molecular studies) and, in the twenty-first century, through a comprehensive study including more sophisticated phylogenetic reconstruction methods, Meccus was again synonymous with Triatoma. Events of natural hybridization with production of fertile offspring have already been reported among sympatric species of the T. phyllosoma subcomplex, and experimental crosses demonstrated reproductive viability among practically all species of the T. phyllosoma subcomplex that were considered as belonging to the genus Meccus, as well as between these species and species of Triatoma. Based on the above, we carried out experimental crosses between T. longipennis (considered M. longipennis in some literature) and T. mopan (always considered as belonging to Triatoma) to evaluate the reproductive compatibility between species of the T. phyllosoma complex. In addition, we have grouped our results with information from the literature regarding crosses between species that were grouped in the genus Meccus with Triatoma, in order to discuss the importance of experimental crosses to confirm the generic reorganization of species.ResultsThe crosses between T. mopan female and T. longipennis male resulted in viable offspring. The hatching of hybrids, even if only in one direction and/or at low frequency, demonstrates reproductive compatibility and homeology between the genomes of the parents.ConclusionConsidering that intergeneric crosses usually do not result in viable offspring in Triatominae, the reproductive compatibility observed between the T. phyllosoma subcomplex species considered in the Meccus genus with species of the Triatoma genus shows that there is “intergeneric” genomic compatibility, which corroborates the generic reorganization of Meccus in Triatoma.Graphical

Highlights

  • Meccus’ taxonomy has been quite complex since the first species of this genus was described by Burmeister in 1835 as Conorhinus phyllosoma

  • Considering that intergeneric crosses usually do not result in viable offspring in Triatominae, the reproductive compatibility observed between the T. phyllosoma subcomplex species considered in the Meccus genus with species of the Triatoma genus shows that there is “intergeneric” genomic compatibility, which corroborates the generic reorganization of Meccus in Triatoma

  • These two species were chosen because both belong to the T. phyllosoma complex [3, 14, 15], and T. mopan has never been considered as belonging to Meccus, unlike T. longipennis

Read more

Summary

Introduction

Meccus’ taxonomy has been quite complex since the first species of this genus was described by Burmeister in 1835 as Conorhinus phyllosoma. Events of natural hybridization with produc‐ tion of fertile offspring have already been reported among sympatric species of the T. phyllosoma subcomplex, and experimental crosses demonstrated reproductive viability among practically all species of the T. phyllosoma sub‐ complex that were considered as belonging to the genus Meccus, as well as between these species and species of Triatoma. We carried out experimental crosses between T. longipennis (considered M. longipennis in some literature) and T. mopan (always considered as belonging to Triatoma) to evaluate the reproductive compat‐ ibility between species of the T. phyllosoma complex. During the taxonomic history within this tribe, several genera have already been considered valid: Eutriatoma Pinto, 1926, Conorhinus Laporte, 1833, Callotriatoma Usinger, 1939, Cenaeus Pinto, 1925, Neotriatoma Pinto, 1931, Lamus Stål, 1859, Mestor Kirkaldy, 1904, Triatomaptera Neiva & Lent, 1940, and Meccus Stål, 1859 [7, 8]. Eutriatoma, Conorhinus, Neotriatoma and Meccus were the genera synonymous with Triatoma [7, 8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call