Abstract
ObjectivesDuring periods such as the COVID-19 crisis, there is a need for responsive public health surveillance indicators in order to monitor both the epidemic growth and potential public health consequences of preventative measures such as lockdown. We assessed whether the automatic classification of the content of calls to emergency medical communication centers could provide relevant and responsive indicators.MethodsWe retrieved all 796,209 free-text call reports from the emergency medical communication center of the Gironde department, France, between 2018 and 2020. We trained a natural language processing neural network model with a mixed unsupervised/supervised method to classify all reasons for calls in 2020. Validation and parameter adjustment were performed using a sample of 39,907 manually-coded free-text reports.ResultsThe number of daily calls for flu-like symptoms began to increase from February 21, 2020 and reached an unprecedented level by February 28, 2020 and peaked on March 14, 2020, 3 days before lockdown. It was strongly correlated with daily emergency room admissions, with a delay of 14 days. Calls for chest pain and stress and anxiety, peaked 12 days later. Calls for malaises with loss of consciousness, non-voluntary injuries and alcohol intoxications sharply decreased, starting one month before lockdown. No noticeable trends in relation to lockdown was found for other groups of reasons including gastroenteritis and abdominal pain, stroke, suicide and self-harm, pregnancy and delivery problems.DiscussionThe first wave of the COVID-19 crisis came along with increased levels of stress and anxiety but no increase in alcohol intoxication and violence. As expected, call related to road traffic crashes sharply decreased. The sharp decrease in the number of calls for malaise was more surprising.ConclusionThe content of calls to emergency medical communication centers is an efficient epidemiological surveillance data source that provides insights into the societal upheavals induced by a health crisis. The use of an automatic classification system using artificial intelligence makes it possible to free itself from the context that could influence a human coder, especially in a crisis situation. The COVID-19 crisis and/or lockdown induced deep modifications in the population health profile.
Highlights
Coronavirus 2019 Disease (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) was detected for the first time in December 2019 in China [1]
The content of calls to emergency medical communication centers is an efficient epidemiological surveillance data source that provides insights into the societal upheavals induced by a health crisis
The use of an automatic classification system using artificial intelligence makes it possible to free itself from the context that could influence a human coder, especially in a crisis situation
Summary
Coronavirus 2019 Disease (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) was detected for the first time in December 2019 in China [1]. Many countries have relied on an extrapolation of classic infection-control and public-health measures to contain the COVID-19 pandemic, similar to those used for Severe Acute Respiratory Syndrome virus in 2003 and H1N1 influenza virus in 2009. These range from extreme quarantine measures in China to painstaking detailed contact tracing with hundreds of contact tracers (e.g., Singapore, Hong Kong, South Korea). These measures may not be effective in 2020 for tackling the scale of COVID-19 [3].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.