Abstract
Classical molecular dynamics (MD) simulations and M06-2X hybrid density functional theory calculations have been performed to investigate the interaction of various nonaqueous organic electrolytes with Na+ ion in rechargeable Na-ion batteries. We evaluate trends in solvation behavior of seven common electrolytes namely pure carbonate solvents (ethylene carbonate (EC), vinylene carbonate (VC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC)) and four binary mixtures of carbonates (EC:PC, EC:DMC, EC:EMC, and EC:DEC). Thermochemistry calculations for the interaction of pure and binary mixtures of carbonate solvents with Na+ ion, Na+ ion coordinated with carbonate clusters obtained from molecular dynamics simulations, show that the formation of Na-carbonate complexes is exothermic and proceeds favorably. Based on the highest binding energy (ΔEb), enthalpy of solvation (ΔH(sol)), and Gibbs free energy of solvation (ΔG(sol)) ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.