Abstract
The homobasidiomycetes is a diverse group of macrofungi that includes mushrooms, puffballs, coral fungi, and other forms. This study used maximum likelihood methods to determine if there are general trends (evolutionary tendencies) in the evolution of fruiting body forms in homobasidiomycetes, and to estimate the ancestral forms of the homobasidiomycetes and euagarics clade. Character evolution was modeled using a published 481-species phylogeny under two character-coding regimes: additive binary coding, using DISCRETE, and multistate (five-state) coding, using MULTISTATE. Inferences regarding trends in character evolution made under binary coding were often in conflict with those made under multistate coding, suggesting that the additive binary coding approach cannot serve as a surrogate for multistate methods. MULTISTATE was used to develop a"minimal"model of fruiting body evolution, in which the 20 parameters that specify rates of transformations among character states were grouped into the fewest possible rate categories. The minimal model required only four rate categories, one of which is approaching zero, and suggests the following conclusions regarding trends in evolution of homobasidiomycete fruiting bodies: (1) there is an active trend favoring the evolution of pileate-stipitate forms (those with a cap and stalk); (2) the hypothesis that the evolution of gasteroid forms (those with internal spore production, such as puffballs) is irreversible cannot be rejected; and (3) crustlike resupinate forms are not a particularly labile morphology. The latter finding contradicts the conclusions of a previous study that used binary character coding. Ancestral state reconstructions under binary coding suggest that the ancestor of the homobasidiomycetes was resupinate and the ancestor of the euagarics clade was pileate-stipitate, but ancestral state reconstructions under multistate coding did not resolve the ancestral form of either node. The results of this study illustrate the potential sensitivity of comparative analyses to character state definitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.