Abstract

Vibration measurement and analysis have been used as a classical approach for health state assessment of gears in complex electromechanical systems for many years. Recently, several attempts have been performed for the detection of gear tooth localized faults using induction machine electrical signature analysis with promising results. These previous researches were mainly relied on the study of mechanical impacts effects, generated by gear localized faults, on the mechanical torque and consequently on the stator phase currents. This paper aims to investigate these recent advances with particular focus on the induction machine-based drive systems. Both analytical and modeling approaches will be considered which are helpful for a better understanding of observed phenomena and which leads to identifying both reliability and effectiveness of non-invasive methods for gear tooth localized fault detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.