Abstract

In deep submicron (DSM) VLSI technologies, it is becoming increasingly harder for a copper based electrical interconnect fabric to satisfy the multiple design requirements of delay, power, bandwidth, and delay uncertainty. This is because electrical interconnects are becoming increasingly susceptible to parasitic resistance and capacitance with shrinking process technology and rising clock frequencies, which poses serious challenges for interconnect delay, power dissipation and reliability. On-chip communication architectures such as buses and networks-on-chip (NoC) that are used to enable inter-component communication in multi-processor systems-on-chip (MPSoC) designs rely on these electrical interconnects at the physical level, and are consequently faced with the entire gamut of challenges and drawbacks that plague copper-based electrical interconnects. To overcome the limitations of traditional copper-based electrical interconnects, several research efforts have begun looking at novel interconnect alternatives, such as on-chip optical interconnects, wireless interconnects and carbon nanotube-based interconnects. This paper presents an overview and current state of research for these three promising interconnect technologies. We also discuss the existing challenges for each of these technologies that remain to be resolved before they can be adopted as replacements for copper-based electrical interconnects in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.