Abstract

Oat is an economically important crop and ranks sixth in world cereal production after maize, wheat, rice, barley and sorghum. It has been primarily utilized as livestock feed. However, the utilization of oats for human consumption has increased progressively, owing to its dietary and health benefits which relies mainly on the total dietary fibre and ?-glucan content, which significantly reduces postprandial blood glucose, insulin and blood lipids, especially serum total and low density lipoprotein cholesterol. Henceforth, enhancing Oat b-glucan content forhuman consumption is desirable. As it is a polygenic trait controlled mainly by genes with additive effects, phenotypic selection for greater b-glucan content would be effective for developing cultivars with elevated b-glucan contents. Oat b-glucan concentration has been found to be positively correlated with protein content and negatively correlated with oil content. ?-glucan yield (i.e., Product of grain yield and ?-glucan content) has been found to correlate positively with both grain yield (r = 0.92) and ?-glucan content (r = 0.66). Hence, this nutritional oat grain quality has been improved through selection for improved grain yield as they both increase simultaneously. Among wild accessions, A. atlantica genotypes have high ?-glucan content (2·2–11·3%) and have been used in breeding programmes for increasing the ?-glucan content of adapted elite local germplasm. Besides conventional breeding approaches, molecular breeding approaches have made possible to identify several molecular markers linked to ?-glucan rich regions across oat genome hence enabling mapping and dissection of ?-glucan rich genomic regions and accelerating the improvement in nutritional grain quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call