Abstract

Many studies have explored the mechanisms involved in relative amino acid usage (RAAU) in a variety of prokaryotes and eukaryotes. A strong bias was observed in highly expressed genes (HEGs) of endosymbiotic bacteria. By means of correspondence analysis, we studied the major trends affecting internal variability of RAAU in Mollicutes. The principal trend is related to the usage of smaller, less aromatic, and GC-rich coded amino acids in HEGs. Given the nature of the genetic code, these properties are linked among them. Expectedly, we found a slow evolutionary rate of HEGs, which is likely driven by purifying selection. On the other hand, the rest of the genes accumulate rapid changes as a result of the extreme mutational bias toward A + T of the genomes and genetic drift, increasing internal variability. Amino acid changes across the phylogeny of the group were traced in order to estimate the mean molecular weight and aromaticity trends in each branch. Finally, we compared amino acid usage bias within and between Mollicutes and the free-living Firmicutes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call