Abstract

The Qinghai-Tibetan Plateau (QTP) and its surrounding areas are undergoing rapid changes in socioeconomic conditions, activity sectors, and emission levels. These changes underscore the significance of conducting local environmental assessments in the future and generating air pollutant emission forecasts necessary for effective evaluation. Current pollutants emissions pathways exhibit regional limitation since their based historical inventory could not accurately reflect the emission characteristics in QTP. This study constructed a high spatial resolution (0.1° × 0.1°) atmospheric pollutant emissions dataset in the Qinghai-Tibet Plateau and its surrounding Areas (QTPA) based on updated emission inventory and various socioeconomic scenarios. We found that the pollutant emissions levels are distinct among different social development scenarios, with SSP3–7.0 demonstrating the highest magnitude of emissions. Regional and sectoral contributions exhibit substantial variations. Notably, solid fuel combustion originating from residential sectors in Northeast India and open fires in Myanmar are identified as high-density sources of PM2.5 emissions. Current pollutant emission patterns in the QTPA are more akin to SSP2–4.5, however, specific regions such as Qinghai and Tibet have exhibited more pronounced trends of emission reduction. The comparison with previous datasets reveals that the predicted pollutant emissions in this study are lower than Scenario Model Intercomparison Project (SMIP) dataset but higher than Asian-Pacific Integrated Model (AIM) dataset due to the revised inventory data and model variations, in which the latter might be the main obstacle to accurate emissions prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.