Abstract

On NW Atlantic rocky shores, the main basal organisms in intertidal communities are seaweeds (Ascophyllum nodosum, Fucus spp. and Chondrus crispus) and filter feeders (barnacles, Semibalanus balanoides, and mussels, Mytilus spp.). Their ecology has been extensively studied in New England (United States), but knowledge gaps exist for northern shores, which are subjected to stronger environmental stress. Therefore, we studied the above organisms on Canadian shores. We quantified the summer abundance of these seaweeds and filter feeders across full vertical (intertidal elevation) and horizontal (wave exposure and winter ice scour) environmental gradients on the Gulf of St. Lawrence and open Atlantic coasts of Nova Scotia. At the regional scale along the open Atlantic coast, seaweeds showed similar abundances in Nova Scotia than values reported for New England. However, both filter feeders were considerably less abundant in Nova Scotia. At the local scale in Nova Scotia, intense winter ice scour (which only occurs on the Gulf of St. Lawrence coast) was associated with a very low abundance of all species except barnacles. Spatial trends in Nova Scotia were similar to patterns known for certain species elsewhere, such as A. nodosum being almost restricted to sheltered habitats, regardless of elevation, and C. crispus being almost restricted to low elevations, regardless of exposure. Other trends were, however, characteristic of Nova Scotia, such as C. crispus being frequent at low elevations in exposed habitats, unlike in New England, where mussels often predominate there because of competitive advantages. In Nova Scotia, mussels were always restricted to cracks and crevices, unlike in New England, where they form extensive intertidal beds on exposed shores. The direct effects of increased environmental stress and indirect effects through altered interspecific interactions might explain the regional differences in local species distribution, which will require experimental validation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call