Abstract

The variability of surface air temperature extremes has been the focus of attention during the past several decades, and may exert a great influence on the global hydrologic cycle and energy balance through thermal forcing. Based on daily minimum (TN) and maximum temperature (TX) observed by the China Meteorological Administration at 143 meteorological stations in the Yangtze River Basin (YRB), a suite of temperature indices recommended by the Expert Team on Climate Change Detection and Indices, with a primary focus on extreme events, were computed and analyzed for the period of 1960–2012 for this area. The results show widespread significant changes in all temperature indices associated with warming in the YRB during 1960–2012. On the whole, cold-related indices, i.e., cold nights, cold days, frost days, icing days and cold spell duration index significantly decreased by −3.45, −1.03, −3.04, −0.42 and −1.6days/decade, respectively. In contrast, warm-related indices such as warm nights, warm days, summer days, tropical nights and warm spell duration index significantly increased by 2.95, 1.71, 2.16, 1.05 and 0.73days/decade. Minimum TN, maximum TN, minimum TX and maximum TX increased significantly by 0.42, 0.18, 0.19 and 0.14°C/decade. Because of a faster increase in minimum temperature than maximum temperature, the diurnal temperature range (DTR) exhibited a significant decreasing trend of −0.09°C/decade for the whole YRB during 1960–2012. However, the decreasing trends all occurred in 1960–1985, while increasing trends though insignificant were found in all sub-regions and the whole YRB during 1986–2012. Geographically, stations in the eastern Tibet Plateau and northeastern YRB showed stronger trends in almost all temperature indices. Time series analysis indicated that the YRB was dominated by a general cooling trend before the mid-1980s, but a warming trend afterwards. In general, the overall warming in the YRB was mainly due to the warming in 1986–2012. Strong relationships between temperature trends and elevation were detected in this study. The warming rates increased with elevation when elevation is above 350m, but decreased with elevation when elevation is below 350m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.