Abstract
AbstractDespite its importance for the global oxidative capacity, spatially resolved trends and variability of the hydroxyl radical (OH) are poorly constrained. We demonstrate the utility of a tropospheric column OH (TCOH) product, created from machine learning and satellite proxy data, in determining the spatial variability in trends of tropical OH over the oceans during September through November. While OH increases domain‐wide by 2.1%/decade from 2005–2019, we find significant spatial heterogeneity in regional trends, with decreases in some areas of 2.5%/decade. Our analysis of the trends in the proxy data indicate anthropogenic‐driven changes in emissions of OH drivers as well as increasing temperatures cause these trends. This OH product is potentially a significant advance in constraining OH spatial variability and serves as a useful complement to existing tools in understanding the atmospheric oxidative capacity. Comprehensive observations of TCOH are required to assess the fidelity of this method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.