Abstract

The aim of the present study was to analyse the data structure of a large data set from rainwater samples collected during a long-term interval (1990-1997) by the Austrian Precipitation Monitoring Network. Eleven sampling sites from the network were chosen as data sources (chemical concentrations of major ions only) covering various location characteristics (height above sea level, rural and urban sampling positions, Alpine rim and Alpine valley disposition, etc.). The analytical results were treated by the application of already classical environmetric approaches, such as linear regression analysis, time-series analysis and principal components analysis (PCA). For most of the sampling sites, a distinct trend of acidity decrease of the wet precipitation was observed. An overall decrease in sulfate concentration for the whole period and all sites of 3.9% year(-1) (2.0 muequiv. L(-1) year(-1)) was found. The free acidity decrease for most of the sites was between 3.5 and 10.9% year(-1). No significant linear trends were found for nitrate. Base cations either decreased (mean percentage decrease for calcium was 5.4% year(-1) and for magnesium 4.4% year(-1)) or did not show any significant change (sodium, potassium). The overall decrease in ammonium concentration was 2.3% year(-1). Further, some typical "rural" (summer minima and winter maxima) and "urban" (winter minima and spring maxima) seasonal behaviour for the majority of the sites in consideration could be defined, indicating the influence of local emission sources. Several latent factors, named "anthropogenic", "crustal" and "mixed salt", were revealed by the multivariate modelling procedure (PCA) possessing a similar structure for most of the sites. The unavoidable exceptions observed were indications of the influence of sporadic local events (construction and agricultural activities, secondary emission sources, etc.), and an effort was made to explain these exceptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.