Abstract

In order to effectively predict the changing trend of operating parameters in the pump unit and carry out fault diagnosis and alarm processes, a trend prediction model is proposed in this paper based on PCA-based multi-task learning (MTL) and an attention mechanism (AM). The multi-task learning method based on PCA was used to process the operating data of the pump unit to make full use of the historical data to extract the key common features reflecting the operating state of the pump unit. The attention mechanism (AM) is introduced to dynamically allocate the weight coefficient of common feature mapping for highlighting the key common features and improving the prediction accuracy of the model when predicting the trend of data change for new working conditions. The model is tested with the actual operating data of a pumping station unit, and the calculation results of different models are compared and analyzed. The results show that the introduction of multi-task learning and attention mechanisms can improve the stability and accuracy of the trend prediction model compared with traditional single-task learning and static common feature mapping weights. According to the threshold analysis of the monitoring statistical parameters of the model, a multi-stage alarm model of pump unit operation condition monitoring can be established, which provides a theoretical basis for optimizing operation and maintenance management strategy in the process of pump station management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.