Abstract
Using a microscopic finite-cluster tight-binding model, we investigate the trend of the magnetic anisotropy energy as a function of the cluster size for an individual Mn impurity positioned in the vicinity of the (1 1 0) GaAs surface. We present results of calculations for large cluster sizes containing approximately 104 atoms, which have not been investigated so far. Our calculations demonstrate that the anisotropy energy of a Mn dopant in bulk GaAs, found to be non-zero in previous tight-binding calculations, is purely a finite size effect that vanishes with inverse cluster size. In contrast to this, we find that the splitting of the three in-gap Mn acceptor energy levels converges to a finite value in the limit of the infinite cluster size. For a Mn in bulk GaAs this feature is related to the nature of the mean-field treatment of the coupling between the impurity and its nearest neighbor atoms. We also calculate the trend of the anisotropy energy in the sublayers as the Mn dopant is moved away from the surface towards the center of the cluster. Here the use of large cluster sizes allows us to position the impurity in deeper sublayers below the surface, compared to previous calculations. In particular, we show that the anisotropy energy increases up to the fifth sublayer and then decreases as the impurity is moved further away from the surface, approaching its bulk value. The present study provides important insights for experimental control and manipulation of the electronic and magnetic properties of individual Mn dopants at the semiconductor surface by means of advanced scanning tunneling microscopy techniques.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.