Abstract
AbstractFuel cell technology is a promising alternative to traditional internal combustion engines in various applications, especially in transportation applications. However, the high cost and limited lifetime of fuel cells have hindered their widespread commercialization. Accurately predicting fuel cell lifetime is crucial for reducing the cost of ownership, ensuring safety, and promoting the adoption of this technology. The objective of the present work is to develop a tool that is able to estimate the lifespan of a proton exchange membrane fuel cell and to predict its behavior to anticipate failures. Therefore, this paper contributes to proposing a multi‐input time‐series prediction network based on an echo state network, which takes the future current into consideration. A degradation trend extraction method is proposed in this paper and the remaining useful life of the fuel cell is predicted. Results have shown that the proposed methods in both short‐term and long‐term prediction have achieved satisfying prediction accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.