Abstract

Changes in rainfall play an important role in agricultural production, water supply and management, and social and economic development in arid and semi-arid regions. The objective of this study was to examine the trend of rainfall series from 18 meteorological stations for monthly, seasonal, and annual scales in Shanxi province over the period 1957–2019. The Mann–Kendall (MK) test, Spearman’s Rho (SR) test, and the Revised Mann–Kendall (RMK) test were used to identify the trends. Sen’s slope estimator (SSE) was used to estimate the magnitude of the rainfall trend. An autocorrelation function (ACF) plot was used to examine the autocorrelation coefficients at various lags in order to improve the trend analysis by the application of the RMK test. The results indicate remarkable differences with positive and negative trends (significant or non-significant) depending on stations. The largest number of stations showing decreasing trends occurred in March, with 10 out of 18 stations at the 10%, 5%, and 1% levels. Wutai Shan station has strong negative trends in January, March, April, November, and December at the level of 1%. In addition, Wutai Shan station also experienced a significant decreasing trend over four seasons at a significance level of 1% and 10%. On the annual scale, there was no significant trend detected by the three identification methods for most stations. MK and SR tests have similar power for detecting monotonic trends in rainfall time series data. Although similar results were obtained by the MK/SR and RMK tests in this study, in some cases, unreasonable trends may be provided by the RMK test. The findings of this study could benefit agricultural production activities, water supply and management, drought monitoring, and socioeconomic development in Shanxi province in the future.

Highlights

  • Rainfall is one of the most important climate elements that can directly affect the availability of water resources, can be used for diagnosing climate change under the background of global warming [1,2], and influence agricultural production activities and the ecohydrological environment [3,4,5]

  • The standard deviation (SD) ranged from 38.45 to 70.03 and coefficient of variation (CV) ranged from 109%

  • Wutai Shan station, whereas the CV here was lowest among the meteorological stations

Read more

Summary

Introduction

Rainfall is one of the most important climate elements that can directly affect the availability of water resources, can be used for diagnosing climate change under the background of global warming [1,2], and influence agricultural production activities and the ecohydrological environment [3,4,5]. Liu et al [37] investigated the spatial and temporal patterns of trends of the precipitation in the Yellow River Basin (YRB) from 81 meteorological stations during the period 1961–2006. They found that most of the precipitation stations showed a downward trend, while only two meteorological stations displayed upward trends. Zhang et al [33]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.