Abstract

We consider a nonoscillatory second-order linear dynamic equation on a time scale together with a linear perturbation of this equation and give conditions on the perturbation that guarantee that the perturbed equation is also nonoscillatory and has solutions that behave asymptotically like a recessive and dominant solutions of the unperturbed equation. As the theory of time scales unifies continuous and discrete analysis, our results contain as special cases results for corresponding differential and difference equations by William F. Trench.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.