Abstract

A trench MOS barrier Schottky (TMBS) rectifier has been formed by carrying out trench bottom counter-doping implantation for improving the blocking voltage and the device reliability. By additionally implementing a counter-doped region enclosing the trench bottom, the reverse blocking voltage of the conventional TMBS rectifier can be significantly enhanced without considerable degradation of on-state characteristics. In addition, the device reliability can be significantly improved. The large peak electric field in the corner of trench bottom, which limits the blocking voltage of the conventional TMBS rectifier, can be largely alleviated due to charge compensation. Though the counter-doped region enclosing the trench bottom may partly encroach into the mesa region, no considerable deterioration of on-state characteristics is caused. In addition, a too low-dose trench-bottom implantation cannot provide sufficient charge compensation, and a too high-dose trench-bottom implantation would create a large peak electric field below the trench bottom. As a result, a proper trench-bottom implantation may be employed to significantly enhance the blocking voltage without considerable degradation of on-state characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call